

### **Identification Number and Specification**

### Example of an identification number

The specification of LMG series is indicated by the identification number. Indicate the identification number, consisting of a model code, dimensions, a part code, and a supplemental code for each specification to apply.

|   | Interchangeable sp                   | ecification                           | 1   | 2 | 3  | 4  | 5    | 6         |
|---|--------------------------------------|---------------------------------------|-----|---|----|----|------|-----------|
|   | Single external cylinder             |                                       | LMG |   | 10 | C1 |      | <u>/U</u> |
|   | Single shaft with grooved ra         | aceway                                | LMG | т | 10 |    | R300 |           |
|   | Assembled set                        |                                       | LMG | т | 10 | C1 | R300 | <u>/U</u> |
|   |                                      |                                       |     |   |    |    |      |           |
| 1 | Model                                |                                       |     |   |    |    |      |           |
| 2 | Shape of shaft with grooved raceway  | Model Page I - 155<br>code            |     |   |    |    |      |           |
| 6 | Size                                 | Dimensions Page II – 155              |     |   |    |    |      |           |
| 4 |                                      | Part<br>code Page II – 155            |     |   |    |    |      |           |
| E | Length of shaft with grooved raceway |                                       |     |   |    |    |      |           |
| 6 | Special specification                | Supplemental<br>Page II - 155<br>code |     |   |    |    |      |           |

# **Points**

### High load capacity

The structure that balls in two rows have contact with the track groove of the shaft allows greater rigidity and larger load capacity.

### • Solid shaft and hollow shaft



### Dimensionally compatible with Linear Bushing LM

LMG series are dimensionally compatible with Linear Bushing LM to allow easy replacement.

# 

| Model                               |                                               |             |                                               |  |  |  |  |  |  |
|-------------------------------------|-----------------------------------------------|-------------|-----------------------------------------------|--|--|--|--|--|--|
| Model                               | Linear Bushing G<br>(LMG series)              |             | : LMG                                         |  |  |  |  |  |  |
|                                     |                                               |             |                                               |  |  |  |  |  |  |
|                                     | For applicable models and sizes, see Table 1. |             |                                               |  |  |  |  |  |  |
|                                     |                                               |             |                                               |  |  |  |  |  |  |
| Shape of shaft with grooved raceway | Solid shaft                                   | : No symbol | For applicable models and sizes, see Table 1. |  |  |  |  |  |  |
|                                     | Hollow shaft                                  | : T         |                                               |  |  |  |  |  |  |
|                                     |                                               |             |                                               |  |  |  |  |  |  |
| S Size                              | 6, 8, 10, 13, 16, 20                          |             | Indicate the shaft diameter in mm.            |  |  |  |  |  |  |
|                                     | 0, 0, 10, 13, 10, 20                          |             | For applicable models and sizes, see Table 1. |  |  |  |  |  |  |

### Table 1 Models and sizes of LMG series

| Shape        | Model | Size |   |    |    |    |    |  |  |  |
|--------------|-------|------|---|----|----|----|----|--|--|--|
| Shape        | Model | 6    | 8 | 10 | 13 | 16 | 20 |  |  |  |
| Solid shaft  | LMG   | 0    | 0 | 0  | 0  | 0  | 0  |  |  |  |
| Hollow shaft | LMGT  | 0    | 0 | 0  | 0  | 0  | 0  |  |  |  |

Remark: LMG series are all interchangeable specification. Non-interchangeable specification is not available.

| Number of external cylinders         |                  | : CO         | For an assembled set, indicates the number of external<br>cylinders assembled on a shaft with grooved raceway.<br>For a single external cylinder, only "C1" is specified. |
|--------------------------------------|------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Length of shaft with grooved raceway |                  | : <b>R</b> O | Indicate the length of the shaft with grooved raceway in<br>mm.<br>For standard and maximum lengths, see the dimension<br>table.                                          |
| 6 Special specification              | With end seal /U |              | Applicable to all models and sizes.                                                                                                                                       |



### **Accuracy**

### Table 2 Twist of grooves with respect to effective length of track groove

|                 | unit: µm |
|-----------------|----------|
| Allowable value | 33       |

Remark: The values can be applied to 100 mm of the effective length of the track groove part at any position.

| Table 3 Allowab | le values of total          | radial runout of s | unit: μm |     |     |        |     |   |     |     |     |     |
|-----------------|-----------------------------|--------------------|----------|-----|-----|--------|-----|---|-----|-----|-----|-----|
| -               | shaft with grooved<br>ay mm |                    | Size     |     |     |        |     |   |     |     |     |     |
| Over            | Incl.                       | 6                  | 8        | 10  | 13  | 16, 20 |     |   |     |     |     |     |
| -               | 200                         | 142                | 142      | 129 | 129 | 126    |     |   |     |     |     |     |
| 200             | 315                         | 203                | 203      | 153 | 153 | 141    |     |   |     |     |     |     |
| 315             | 400                         | -                  | 255      | 173 | 173 | 153    |     |   |     |     |     |     |
| 400             | 500                         | 500                | 500      | 500 | 500 | 500    | 500 | - | 306 | 193 | 193 | 165 |
| 500             | 630                         | -                  | -        | 221 | 221 | 182    |     |   |     |     |     |     |
| 630             | 800                         | -                  | -        | -   | 260 | 207    |     |   |     |     |     |     |
| 800             | 1 000                       | -                  | -        | -   | -   | 240    |     |   |     |     |     |     |

Remark: These are values when an internal clearance is 0  $\mu$ m.

### Table 4 Measuring methods of accuracy

| Item                                                                                  | Measuring method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Illustration of measuring method    |
|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Twist of grooves with respect to<br>effective length of track groove<br>(See Table 2) | While supporting the shaft with grooved raceway, apply a unidirectional torsion moment load to the external cylinder, place the dial gage probe vertically to the shaft with grooved raceway on the side face of the measuring block of twist of grooves attached on the external cylinder, and measure the deflection when the external cylinder and the dial gage probe are moved 100 mm in the axial direction at any position on the effective length of track groove of the shaft with grooved raceway. However, the dial gage probe should be applied as near as possible to the outer peripheral face of the external cylinder. | Measuring block of twist of grooves |
| Total radial runout of axial line of<br>shaft with grooved raceway<br>(See Table 3)   | While supporting the shaft with grooved<br>raceway at its supporting parts or at both<br>centers, place a dial gage probe on the<br>outer peripheral face of the external<br>cylinder, and measure the deflection from<br>one rotation of the shaft with grooved<br>raceway at several positions in the axial<br>direction to obtain the maximum value.                                                                                                                                                                                                                                                                                |                                     |

### **Internal Clearance**

The internal clearance of LMG series is approximately 10  $\mu m.$ 

# **Load Direction and Load Rating**

The LMG series must be used with its load rating corrected in accordance to the load direction. The basic dynamic load rating and basic static load rating shown in the dimension table should be corrected to values in Table 4.

### Table 4 Load ratings corrected for load direction



## Identification number and quantity for ordering

To order an assembled set of LMG series, please specify the number of sets based on the number of shafts with grooved raceway. For external cylinders or single shafts with grooved raceway, please specify the number of units.



# Moment of Inertia of Sectional Area and Section Coefficient of Shaft with Grooved Raceway \_

Table 5 Moment of inertia of sectional area and section coefficient of shaft with grooved raceway

| J    |                   |                                       |                                        |              |  |  |  |  |  |  |  |  |  |  |
|------|-------------------|---------------------------------------|----------------------------------------|--------------|--|--|--|--|--|--|--|--|--|--|
| Size | Moment of inertia | n of sectional area<br>m <sup>4</sup> | Section coefficient<br>mm <sup>3</sup> |              |  |  |  |  |  |  |  |  |  |  |
|      | Solid shaft       | Hollow shaft                          | Solid shaft                            | Hollow shaft |  |  |  |  |  |  |  |  |  |  |
| 6    | 60                | 59                                    | 20                                     | 20           |  |  |  |  |  |  |  |  |  |  |
| 8    | 190               | 190                                   | 49                                     | 48           |  |  |  |  |  |  |  |  |  |  |
| 10   | 470               | 460                                   | 95                                     | 93           |  |  |  |  |  |  |  |  |  |  |
| 13   | 1 360             | 1 300                                 | 210                                    | 200          |  |  |  |  |  |  |  |  |  |  |
| 16   | 3 130             | 2 930                                 | 390                                    | 360          |  |  |  |  |  |  |  |  |  |  |
| 20   | 7 720             | 7 230                                 | 770                                    | 720          |  |  |  |  |  |  |  |  |  |  |

# Lubrication \_\_\_\_\_

Grease is not pre-packed in the LMG series, so please perform adequate lubrication as needed.

Both oil lubrication and grease lubrication are available in the LMG series. For grease lubrication, use of high-quality lithium-soap base grease is recommended.

### **Dust Protection**

No dust protection seal is provided for LMG series. For applications in other than clean environment, cover the entire unit with a protective case, etc. to prevent harmful foreign substances such as dust and particles from outside from entering.

The special specification with end seals (supplemental code / U) has a dust protection effect. However, if large amount of contaminant or dust are floating, or if large particles of foreign substances such as chips or sand may adhere to the shaft with grooved raceway, it is recommended to attach a protective cover to the linear motion mechanism.

### **Precaution for Use**

#### Fitting of external cylinder

Generally, clearance fit (H7) is recommended for fitting between the external cylinder and the housing bore. The transition fit (J7) may be applied for special use.

### **O** Typical mounting structure

Mounting examples of the external cylinder are shown in Fig. 1. The fixing thread depth of mounting screws for the external cylinder must not exceed the maximum fixing thread depth indicated in the dimension table. Since the screw hole for the external cylinder is penetrated, the shaft with grooved raceway will be pushed by the screw if the fixing thread depth is too deep, and the running accuracy and life will be adversely affected.

Fig. 1 Mounting examples of external cylinder

#### Multiple external cylinders used in close proximity

When using multiple external cylinders in close distance to the same housing, it is recommended to ensure that the distance between the external cylinders is three times as long as the length of the external cylinder. When using multiple external cylinders in closer distance, contact IKO.

### **4** Loaded condition with rotating torque

Use IKO Linear Ball Spline G under loaded conditions with a rotating torque bi-directionally or repeatedly.

#### **Operating temperature**

The maximum operating temperature is 120°C and temperature up to 100°C is allowed for continuous operation. When the temperature exceeds 100°C, contact IKO.

### Mounting of external cylinder

When press-fitting the external cylinder to the housing, assemble them correctly by using a press and a suitable jig fixture. (See Fig. 2.)



Fig. 2 Press-fitting of external cylinder

LMG

# **IKO** Linear Bushing G







| Identification | geable    | Ma                | uss (Ref.)<br>g                |    |                               |    |                  | Nominal dimens              | sions a<br>mm | and tolerances   |             |    |                           |                | Basic dynamic<br>load rating | Basic static<br>load rating | Dynamic (5)<br>torque rating | Static (5)<br>torque rating |
|----------------|-----------|-------------------|--------------------------------|----|-------------------------------|----|------------------|-----------------------------|---------------|------------------|-------------|----|---------------------------|----------------|------------------------------|-----------------------------|------------------------------|-----------------------------|
| number         | Interchar | External cylinder | Shaft with grooved raceway (1) | D  | Dim. D tolerance              | С  | Dim. C tolerance | $M \times \text{depth}$ (2) | d             | Dim. d tolerance | $d_2^{(3)}$ | K  | <i>L</i> ( <sup>4</sup> ) | Maximum length | C<br>N                       | C <sub>o</sub><br>N         | TN·m                         | T₀<br>N · m                 |
| LMG 6          | 0         | 9.4               | 22.0                           | 12 | 0                             | 19 | 0                | M2.5×1.9                    | 6             | 0                | 5.2         | -  | 150 200                   | 300            | 587                          | 641                         | 2.1                          | 2.2                         |
| LMGT 6         | 0         | 9.4               | 19.5                           | 12 | -0.011                        | 19 | -0.200           | (2.5)                       | 0             | -0.012           | 5.2         | 2  | 150 200                   | 300            | 567                          | 641                         | 2.1                          | 2.2                         |
| LMG 8          | $\circ$   | 15.7              | 39.3                           | 15 | 0                             | 24 | 0                | M3 ×2.4                     | 8             | 0                | 7           | -  | 150 200 250               | 500            | 769                          | 962                         | 3.5                          | 4.3                         |
| LMGT 8         | $\circ$   | 33.7              | 33.7                           | 15 | , <u>–</u> 0.011 <sup>2</sup> | 24 | -0.200           | (3)                         | Ů             | -0.015           |             | 3  | 100 200 200               | 400            | 709                          | 902                         | 3.5                          | 4.5                         |
| LMG 10         | $\circ$   | 31.5              | 61.2                           | 19 | 0                             | 29 | 0                | M3 ×3.1                     | 10            | 0                | 8.9         | -  | 200 300                   | 600            | 1 410                        | 1 710                       | 8.0                          | 9.7                         |
| LMGT 10        | $\circ$   | 51.5              | 51.5 51.4                      | 15 | -0.013                        | 29 | -0.200           | (4)                         |               | -0.015           | 4           | 4  | 200 300                   | 000            | 1410                         | 1710                        | 8.0                          | 5.7                         |
| LMG 13         | $\circ$   | 45.4              | 104                            | 23 | 0                             | 32 | 0                | M3 ×3.4                     | 13            | 0                | 11.9        | _  | 200 300 400               | 800            | 1 880                        | 2 150                       | 13.7                         | 15.7                        |
| LMGT 13        | $\circ$   | 45.4              | 81.4                           | 20 | -0.013                        | 52 | -0.200           | (4.5)                       | 13            | -0.018           | 11.5        | 6  | 200 300 400               | 800            | 1 000                        | 2 150                       | 13.7                         | 15.7                        |
| LMG 16         | $\circ$   | 78.2              | 157                            | 28 | 0                             | 37 | 0                | M4 ×4.1                     | 16            | 0                | 14          | -  | 200 300 400               | 1 000          | 2 590                        | 2 930                       | 23.1                         | 26.1                        |
| LMGT 16        | 0         | 118               | 118                            | 20 | -0.013                        | 57 | -0.200           | (5.5)                       | 16            | -0.018           | 14 8        | 8  | 200 300 400               | 1000           | 2 390                        | 2 930                       | 23.1                         | 20.1                        |
| LMG 20         | 0         | 110               | 246                            | 32 | 0                             | 42 | 0                | M4 ×4.1                     | 20            | 0                | 17.5        | -  | 300 400 500 600           | 1 000          | 3 010                        | 3 660                       | 32.8                         | 39.9                        |
| LMGT 20        | 0         | 110               | 185                            | 52 | -0.016                        | 42 | -0.200           | (5.5)                       | 20            | -0.021           | 17.5        | 10 | 500 400 500 600           | 1 000          | 3010                         | 3 000                       | 52.0                         | 53.5                        |

Notes (1) The mass of the shaft with grooved raceway is the value per 100 mm of the track groove part.

(2) The values in ( ) are the maximum fixing thread depth.

(3)  $d_2$  represents the maximum diameter for end machining.

(4) Represents standard length. We can produce other than the standard length, please specify the length of the shaft with grooved

raceway by indicating the length in mm with the identification number.

(<sup>5</sup>) Applicable under loaded conditions with an unidirectional torque at all times.

Use IKO Linear Ball Spline G under loaded conditions with a rotating torque bi-directionally or repeatedly.

Remark: Linear Bushing G are all interchangeable specification.